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Abstract 
The least-mean-square (LMS) adaptive filter is applied to suppress  narrow-band radio- 
frequency  interference (RFI) in wideband synthetic  aperture  radar  (SAR) signals.  Simulation 
is used to show the working principles of the adaptive  filter. The filter  performance  with 
respect to  the filter parameters (filter length, delay, and  step size) is analyzed  in terms of the 
radar performance  parameters such as  the integrated sidelobe ratio  (ISLR)  and peak side- 
lobe ratio  (PSLR). Finally, the algorithm is tested with data in different noisy environments, 
collected in the  JPL  P-band TopSAR program. 

1 Introduction 
The problem of removal (or enhancement) of narrow-band  interference from wideband sig- 
nals  has long been an active research topic in various disciplines. Examples  can be found in 
the signal processing [l], communications [2], and lately in radar [3, 41 and image processing 
[5] communities.  Adaptive  filters [6, 71 have played a vital  part in solving this problem. The 
most  popular  adaptive filtering technique is the LMS algorithm, which has enjoyed enormous 
popularity due  to  its good compromise for the convergence speed, final misadjustment,  sta- 
bility and complexity, that are usually required at  the same  time.  This  algorithm utilizes a 
gradient  search  technique to determine the filter coefficients  which minimize the mean square 
prediction  error [6]. The LhIS algorithm  requires only 2N operations  per  iteration for real 
data (N  for complex data) and no explicit determination of the correlation coefficients of the 
input data [8]. 

The LMS filter in Fig. 1 can be  intuitively described as  follows. The delay A causes 
decorrelation between the wideband components  (radar  signal) of the primary  input d and 
the reference input x .  The adaptive  filter  tries to estimate  the narrow-band component 



y (RFI signal), and in doing so, effectively  forms an equivalent transfer  function, which 
is similar to  that of narrow-band filters centered at  the frequencies of the narrow-band 
components of the  input signal. The wideband component of the delayed input is rejected, 
while the phase difference  of the narrow-band components is readjusted so that they cancel 
each other at the  summing  junction, producing a minimum error signal consisting of mainly 
the wideband component. Uses of the LMS adaptive filter to detect signals (such as sinusoids, 
narrow-band and chirp-like signals, . . . ) in white Gaussian noise  have  been described in [8]. 

In this  study, we  will apply the LMS algorithm to remove narrow-band RFI from  wide- 
band SAR signals. We first describe the point target  simulator. Then,  the  stability  and 
convergence of the filter are analyzed in details in terms of the filter parameters (filter 
length, delay, and  step size) and  input characteristics (signal bandwidth, sampling rate,  and 
SNR) . It has been shown that  the filter output converges  more rapidly than  the filter weights 
[8]. Consequently, the evaluation of the filter performance is based on the SAR compressor 
output with the help of the radar  parameters, such as ISLR and  PSLR. Finally, we  will show 
cleaned images obtained by applying the  adaptive filter to  data collected by the JPL P-band 
TopSAR systems [9]. 

2 The LMS Algorithm 
The LMS adaptive filter is shown  in Fig. 1 and consists of an L-weight linear prediction filter 
in  which the coefficients wl(lc) are 'adaptively updated at  the  input sampling rate, f s .  We. 
define the L-element input  and weight vectors as d(n) = [d(n), d ( n  - l), . . . , d(n - L + l)]' 
and w(n) = [wo(n), w1(n), . . . , w,5-l(n)IT, respectively. The superscript T denotes the  matrix 
transpose. In the  RFI suppression problem, a reference signal is obtained by delaying the 
received signal d ( n )  to give z(n) = d(n - A) for some time delay A. The  output of the filter 
is a linear combination of these delayed past  input values  weighted  by the filter weight vector 

This gives an  estimate of the RFI signal. The prediction error, which  is the  radar signal of 
interest, is obtained by subtracting  the RFI estimate y from the received signal d 

The value of A is chosen to remove the correlation between the wideband components of the 
input signal d ( n )  and  the (predicted)  filter output y(n). The filter weights ~ ( n )  are selected 
so as to minimize the mean square error (MSE) E[e2(n)].  where E[.) is the expectation 
operator.  The Widrow-Hoff LMS algorithm leads to a recursive relation For updating  the 
weight vector (6, 71 
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w(n + 1) = w(n) + px(n)e*(n) (3) 

where p is the  adaptation constant or stepsize  parameter.  This parameter controls the  trade- 
off between  convergence speed and final misadjustment [6, 7, 81. Large value of p leads to 
faster convergence at  the expense of large final  misadjustment. Its value is preselected based 
on the desired performance characteristics which, in our case, are  the  radar performance 
parameters. 

3 The  Point-Target  Simulator 
The point-target  simulator, used  in verifying the algorithm  and making parameter selections, 
is shown in Fig. 2. The radar’s  parameters are specified  in the left-top corner. Noise consists 
of thermal  random noise, discrete sinusoidal tones,  and narrow-band modulation signals (AM, 
FM, . . . ).  They  are characterized by their  amplitudes, frequency locations, and  bandwidths 
with respect to  the  radar signal. In the  future GeoSAR system (operational in Sept. 1999), 
a sniffer pulse is also allowed to measure the  RFI environment. The combined radar-and- 
noise signal is fed into an  A/D converter using either  8-bit or block-floating-point (BFPQ) 
quantization scheme. The  A/D  output is the  input  to  the LMS adaptive filter which  gives 
as its  outputs  the estimated  RFI signal and  the cleaned radar signal. Fig. 3 shows the 
time-domain waveforms and frequency spectra of the components of the  tptal signal. The 
chirp signal has a  bandwidth of 40 MHz and  its signal-to-noise ratio (SNR) is  10 dB. The .  
RFI consists of 6 tones and 2 FM signals. The tones are  at frequencies f 3 ,  f 1 0 ,  and f 1 5  
MHz, with amplitudes (interference-to-signal ratio, ISR) 12, 13,  and 17 dB, respectively. 
The FM signals have center frequencies of f 1 2  MHz, with  bandwidth of 100  kHz (typical 
for FM radio channels),  and ISR of 15 dB.  The initial phases of all RFI signals are picked 
at random. 

4 Simulation Results, Performance  Analysis,  and  Real 
Images 

4.1 Simulation  Results and  the  Radar  Parameters 
Fig. 4 compares the signal waveforms and  spectra of the  input,  output, and ideal signals. 
As evident from the  output  spectra, most of RFI energy has been  removed and  the  output 
waveform is close to  the ideal case. Fig. 5 shows the  outputs of the pulse  compression filter 
for the unfiltered, filtered, and ideal radar signals. The presence of RFI makes it impossible 
to detect the  target  (top  graph).  The  adaptive filter helps in reducing the sidelobe energy 
and  enhance the  target visibility (middle graph).  The compressor output of the filtered 
signal compares favorably with the ideal case (bottom  graph). In order to evaluate the 
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algorithm, it is necessary to define some performance  parameters. Among the  parameters 
useful  for characterizing  filter  performnace are  the ISLR and PSLR. The ISLR is the  ratio of 
the energy in the sidelobe to  the energy in the main lobe. And the PSLR is the  ratio of the 
peak value of the sidelobe to  the peak value of the main lobe. Let g(r)  denotes  the  output 
of the compressor filter, the ISLR and PSLR are defined as 

4.2 Performance  with  Respect to the Filter  Parameters 
The design parameters for the LMS adaptive filter are  the filter length L,  the delay A and  the 
step size p .  The objective is to  study  the variation of the performance parameters, ISLR and 
PSLR, in terms of these design parameters. Since there is no closed form solution  relating 
these two sets of parameters,  one  simulation  technique is to fix all but one parameter at each 
simulation  stage. For example, we first  let L = 512, A = 1, and  study  the behavior of ISLR 
and PSLR as functions of the  stepsize  parameter p .  The results are shown in  Fig. 6. The 
top  (bottom) horizontal line indicates the limiting values in the case of unfiltered  (ideal) 
signal. The filter performance will be somewhere in between. The simulation is repeated for. 
the  other two design parameters L and A, and  the  results  are  plotted in Figs. 7 and 8. The 
optimal values for the filter's  parameters  are L = 512, p = 0.1, and A = 1, corresponding to 
gains of 25 dB  and 22 dB for the ISLR and  PSLR, respectively (see Fig. 8). These  optimal 
values were used to produce  the results in Figs. 4 and 5. 

4.3 JPL P-Band TopSAR  Images 
Using the  optimal design parameters given above, we have applied the LMS adaptive filter to 
a test  site in Mount Sonoma, California. The  data has been acquired by the  JPL  P-band (40 
MHz) TopSAR instrument [9] in 1995. The average spectra of 100,000 lines are  plotted in 
Fig. 9. The  top  spectrum clearly shows the presence of RFI which  was  effectively cleaned as 
shown on bottom  graph. And finally, Fig. 10 displays the RFI-contaminated  range-Doppler 
image (left)  and the corresponding cleaned image (right). 

5 Conclusion 
We have presented an  adaptive filtering technique to remove RFI from wideband SAR signals. 
The filter employs the least-mean-square  algorithm to  update  the filter weights. This weight 
update scheme requires no matrix solving or the calculations of the correlation coefficients. 
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The filter design is very simple since there  are only three design parameters. Yet, the 
filter can adapt  to  the noisy RFI  environment. We have also described the simulation 
procedure to show the filter’s working principle and  to  obtain  the  optimal values for the 
design parameters.  Finally, we have displayed the RFI-contaminated  image and compared 
it with a much improved image. Our future efforts include fast versions of the  adaptive filter 
and  automatic  determination of the design parameters. 
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Figure 3: Time-Domain and Frequency-Domain Components of Total Signal 
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Figure 4: Comparison of Signal Waveforms and  Spectra 
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Figure 5: Comparison of Outputs of Pulse Compression Filter 
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Figure 6: Performance Parameters ISLR and PSLR in terms of the Step-Size Parameter p 
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Figure 7: Performance Parameters ISLR and PSLR in terms of the Filter Length L 

20 I I 

, r ,  . * . "I .... ........... "+.. ....... * ...... * ... - ..... " ................ # 

1 0  - . .  . . . . . . . . . . . . . . . .  . .  . . . . . . . . . .  . . . . .  

D 

0 

- e  -+ - - 
-10  - 

-30 

-35 
- + 1 

0 1 0  20 30 40 50 00 
Delta 

Figure 8: Performance Parameters ISLR and  PSLR in terms of the Delay A 
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Figure 9: Average Spectrum of 100,000 Pulses (top: unfiltered,  bottom:  filtered). 


